Optimization of Mass and Stiffness Distribution for Efficient Bipedal Walking
نویسندگان
چکیده
Energy-efficient control of bipedal walking robots requires both minimization of mechanical energy losses (often mainly due to impacts) and the use of natural oscillations in a mechanism to minimize actuator torques (as shown by research on passive dynamic walking). In this paper, we discuss how these aspects can be analyzed and optimized using mathematical models of the dynamics, as opposed to using only engineering intuition and experimental results. We use a simple planar three-link robot as an example to illustrate the ideas.
منابع مشابه
Robust and efficient walking with spring-like legs.
The development of bipedal walking robots is inspired by human walking. A way of implementing walking could be performed by mimicking human leg dynamics. A fundamental model, representing human leg dynamics during walking and running, is the bipedal spring-mass model which is the basis for this paper. The aim of this study is the identification of leg parameters leading to a compromise between ...
متن کاملBipedal locomotion using variable stiffness actuation
Robust and energy-efficient bipedal locomotion in robotics is still a challenging topic. In order to address issues in this field, we can take inspiration from nature, by studying human locomotion. The Spring-Loaded Inverted Pendulum (SLIP) model has shown to be a good model for this purpose. However, the human musculoskeletal system enables us to actively modulate leg stiffness, for example wh...
متن کاملOptimal Mass Distribution for Passivity-Based Bipedal Robots
This paper reports how and to what extent the mass distribution of a passive dynamic walker can be tuned to maximize walking speed and stability. An exploration of the complete parameter space of a bipedal walker is performed by numerical optimization, and optimal manifolds are found in terms of speed, the form of which can be explained by a physical analysis of step periods. Stability, quantif...
متن کاملFrom Formal Methods to Algorithmic Implementation of Human Inspired Control on Bipedal Robots
This paper presents the process of translating formal theory and methods to efficient algorithms in the context of human-inspired control of bipedal robots, with the end result being experimentally realized robust and efficient robotic walking with AMBER. We begin by considering human walking data and find outputs (or virtual constraints) that, when calculated from the human data, are described...
متن کاملOn Adjustable Stiffness Artiicial Tendons in Bipedal Walking Energetics
Inspired by locomotion in nature, researchers have developed the passive dynamic walking machine principle and applied it to the legged robotics (Coleman & Ruina, 1998; Collins et al., 2001; Garcia, 1999; McGeer, 1990; Wisse, 2004; Wisse & Frankenhuyzen, 2006). The passive dynamic walking machines provide human-like locomotion in legged robots that is more efficient than the precisely joint-ang...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005